SEMANTIC LEDGER TECHNOLOGY

A methodological approach for development and deployment of data sharing in complex organizational networks | Spek, J.C. (Jacco)

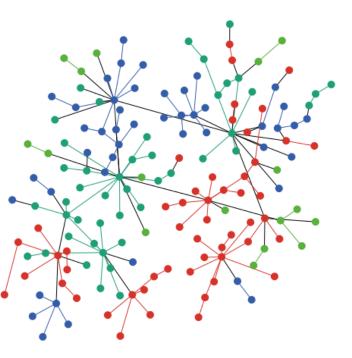
Tennes Contraction and the second second second

ARE THESE PRODUCTS REALLY ORGANIC?

Unverifiable claims No trust in supply-chains Complexity of modern supply-chains Value of certifications (Fraud)

Food-safety

Recalls


Compliance is hard to prove

DATA SHARING IN COMPLEX NETWORKS IS HARD

Because:

- Incompatible data-structures
- > Confidential data
- Narrow contexts
- > Variety of contexts
- Data-silos
- > Changing landscape of participants

IDEAL SOLUTION

- > Automatically publish interoperable data structures
- Independent of context
- > Into a single trusted system
- > Where data can be shared privately and confidentially
- > Publication of business rules and knowledge models
- > Compliance is easily verifiable
- > Is this possible?

SEMANTIC LEDGER TECHNOLOGY

- Combine immutability of distributed ledgers with interoperability of semantic technology to create an immutable ledger to register and trace value-assets:
 - > Enable data transparency, traceability and interoperability through- and between, supply-chains
 - > Publication of formal business rules and knowledge models (semantics)
 - > Prove compliance
 - > Real-time insight in validity of assets (certificates, roles etc.)
 - Single-point-of-truth (The ledger)
- > It also provides transactional confidentiality:
 - Ensure privacy and confidentiality of transactions

DISTRIBUTED LEDGER TECHNOLOGY

- Core functionalities:
 - Immutability
 - > Data cannot be removed or altered
 - > Distributed infrastructure
 - > Infrastructure is not run- or owned by a single party
 - > Ledger functionality is independent of any node, it cannot be shut-down by a single party.
 - "one system" to store and retrieve data
 - > All data are assets
 - > Ownership is registerred
 - > Data ownership can be transferred

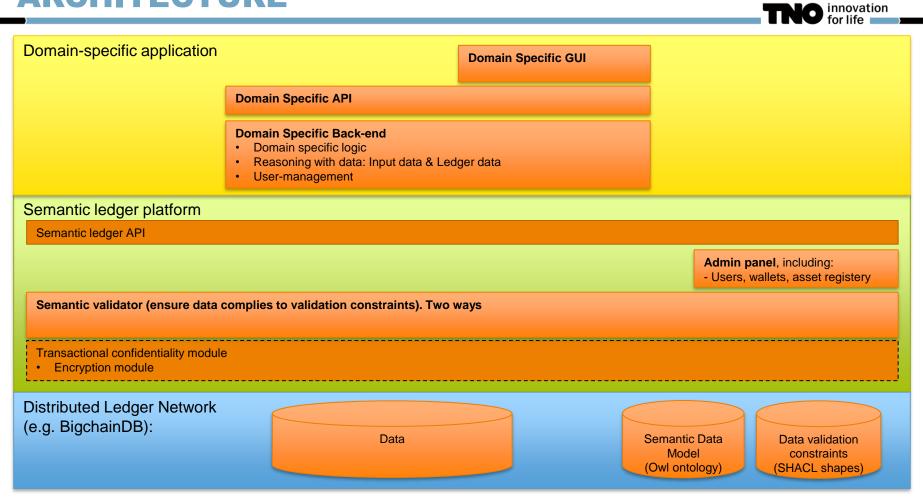
SEMANTICS

- Semantics:
 - > "Semantics is the linguistic and philosophical study of meaning in languages"
 - > Describes meaning of, and relationship between terms
 - > Provides the rules for interpreting the syntax
 - > Semantic models are called **ontologies**.
 - > Formally represent the world in terms of entities, events and scene in a logical form (such as description logic).

SEMANTIC TECHNOLOGIES USED

- **RDF** (Resource Description Framework)
 - > Method for conceptual description of information
 - Subject-predicate-object graphs
 - Resources have unique resource identifiers (URI's)
- > **OWL** (Web Ontology Language)
 - Knowledge representation language (Ontologies)
 - > Expressed in RDF
 - > Open world
- **SHACL** (Shape Constraint Language)
 - Language for validating RDF graphs against shape conditions (like XML schemas)
 - Closed world

ROLE OF SEMANTICS IN THE PLATFORM


- Give 'meaning' to the published data (using ontologies)
 - Conceptual relation between attributes of data-objects
 - > Domain/range of attributes
- > Specify constraints and rules for data
 - > Cardinality of attributes (A published certificates has **exactly one** expiration date)
 - > Format ('expiration date' contains a valid date-format)
- > On-chain data become 'semantically interoperable'
 - > Refer to other data-objects with unambiguous, shared meaning
- > Allows business rules to be specified and validated

ROLE OF DISTRIBUTED LEDGER IN THE PLATFORM

- > Provide **immutable** ledger to timestamp statements
 - > At time X, statement Y was done by actor Z
- > Transfer and trace ownership, custody, validity of data-assets (Certificates/products etc.)
- Register statements about statements
 - > Auditor: "Farmer John used illegal pesticides, so his certificate is revoked"
- > Real-time insight in the validity of data-assets
 - Recalls of products down-chain when something goes wrong
- Prevent fraud
 - Mass balance of certified produce cannot change → 100kg of certified produce cannot become 1000kg down-chain

ARCHITECTURE

CURRENT PROJECTS

- Supply-chain transparency
 - > Agri-food
 - > Commodity trading
- Rail logistics
- > Business process verifiability
- Legal cannabis compliancy

THANK YOU FOR YOUR ATTENTION

innovati for life

Jacco Spek (jacco.spek@tno.nl)

TNO.NL/TNO-INSIGHTS